Numerical enclosure for each eigenvalue in generalized eigenvalue problem
From MaRDI portal
Publication:765307
DOI10.1016/j.cam.2011.12.013zbMath1248.65039OpenAlexW1974525150WikidataQ112880406 ScholiaQ112880406MaRDI QIDQ765307
Publication date: 19 March 2012
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2011.12.013
numerical exampleseigenvectorgeneralized eigenvalue problemnon-Hermitian matricesnumerical enclosure
Related Items
Rigorous Numerical Enclosures for Positive Solutions of Lane–Emden’s Equation with Sub-Square Exponents ⋮ Fast enclosure for solutions of generalized Sylvester equations ⋮ Verified eigenvalue and eigenvector computations using complex moments and the Rayleigh-Ritz procedure for generalized Hermitian eigenvalue problems ⋮ Unnamed Item ⋮ Verified solutions of delay eigenvalue problems ⋮ An a posteriori verification method for generalized real-symmetric eigenvalue problems in large-scale electronic state calculations ⋮ Fast verified computation for the solution of the T-congruence Sylvester equation ⋮ Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems ⋮ Numerical verification for asymmetric solutions of the Hénon equation on bounded domains ⋮ Iterative refinement for symmetric eigenvalue decomposition. II. Clustered eigenvalues
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Fast enclosure for all eigenvalues in generalized eigenvalue problems
- Guaranteed inclusions for the complex generalized eigenproblem
- A new look at the Lanczos algorithm for solving symmetric systems of linear equations
- The calculation of guaranteed bounds for eigenvalues using complementary variational principles
- Large-scale complex eigenvalue problems
- Computational error bounds for multiple or nearly multiple eigenvalues
- A simple method for error bounds of eigenvalues of symmetric matrices