Rings with finite decomposition of identity.
DOI10.1007/s11253-011-0509-9zbMath1248.16018OpenAlexW2031303103MaRDI QIDQ765387
Mikhailo Dokuchaev, Nadiya Gubareni, Vladimir Kirichenko
Publication date: 19 March 2012
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: http://dspace.nbuv.gov.ua/handle/123456789/166010
semiprime ringsprime ringsfiniteness conditionslattices of idealsascending chain conditionDedekind-finite ringsdescending chain conditionFDI-ringsorthogonal primitive idempotents
Endomorphism rings; matrix rings (16S50) Prime and semiprime associative rings (16N60) Noncommutative local and semilocal rings, perfect rings (16L30) Other classes of modules and ideals in associative algebras (16D80) Ideals in associative algebras (16D25) Chain conditions on annihilators and summands: Goldie-type conditions (16P60)
Related Items
Cites Work
- Uniform modules over serial rings
- Serial rings and finitely presented modules
- Refinements for infinite direct decompositions of algebraic systems
- Piecewise domains
- Semiperfect ipri-rings and right Bézout rings
- Semi-Prime Rings with Maximum Condition
- Finitistic Dimension and a Homological Generalization of Semi-Primary Rings
- Torsionless modules over 1-gorensteinl-hereditary artinian rings
- ON INCIDENCE MODULO IDEAL RINGS
- A Generalization of the Ring of Triangular Matrices
- THE STRUCTURE OF HEREDITARY RINGS
- I-Rings
- Rings of left invariant module type
- Exchange rings, units and idempotents
- On Characterizations of Prüfer Rings.
- HEREDITARY RINGS
- Semihereditary rings
- A Krull-Schmidt Theorem for Infinite Sums of Modules
- Hereditary Semi-Primary Rings and Tri-Angular Matrix Rings
- A Note on the Global Dimension of Subrings
- Elementary Divisors and Modules
- Some Remarks on One-Sided Inverses
- Inverses and Zero Divisors in Matrix Rings
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item