Global and local definition of the Monge-Ampère operator on compact Kähler manifolds
From MaRDI portal
Publication:765744
DOI10.1016/j.crma.2012.01.025zbMath1239.32033OpenAlexW2003817094MaRDI QIDQ765744
Publication date: 22 March 2012
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2012.01.025
Related Items
Cites Work
- Maximal subextensions of plurisubharmonic functions
- A new capacity for plurisubharmonic functions
- Intrinsic capacities on compact Kähler manifolds
- Uniqueness in \(\mathcal E(X,\omega)\)
- Monge-Ampère measures on pluripolar sets
- Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures)
- Pluricomplex energy
- The complex Monge-Ampère equation
- Subextension of plurisubharmonic functions with weak singularities
- The weighted Monge-Ampère energy of quasiplurisubharmonic functions
- A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications
- A general Dirichlet problem for the complex Monge–Ampère operator
- Monge-Ampere equation on compact Kahler manifolds
- The complex Monge-Ampère equation and pluripotential theory
- Unnamed Item
- Unnamed Item