Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden

From MaRDI portal
Publication:769069

DOI10.1007/BF01899996zbMath0078.35803MaRDI QIDQ769069

Ludwig Danzer, Detlef Laugwitz, Hanfried Lenz

Publication date: 1957

Published in: Archiv der Mathematik (Search for Journal in Brave)




Related Items

Exact primitives for smallest enclosing ellipses, On the complexity of some basic problems in computational convexity. I. Containment problems, A Helmholtz-Lie type characterization of ellipsoids. I, Extremal inscribed and circumscribed complex ellipsoids, Stability of Isometries, Minimal ellipsoids and their duals, A subexponential bound for linear programming, Fixing systems and inner illumination, A combinatorial bound for linear programming and related problems, Computing minimum-volume enclosing ellipsoids, An inequality for the volume of inscribed ellipsoids, QUANTILE APPROXIMATION FOR ROBUST STATISTICAL ESTIMATION AND k-ENCLOSING PROBLEMS, John and Loewner ellipsoids, Normal bundles of convex bodies, On affine maps on non-compact convex sets and some characterizations of finite-dimensional solid ellipsoids, Application of an idea of Voronoĭ to John type problems, Über kennzeichnende Eigenschaften von Ellipsoiden und euklidischen Räumen. III, Automorphismengruppen achtdimensionaler lokalkompakter Quasikörper, Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies, Uniqueness results for minimal enclosing ellipsoids, Extremal convex bodies for affine measures of symmetry, Spreads, Geometric properties of chiral bodies, ELLIPSOIDS ARE THE ONLY LOCAL MAXIMIZERS OF THE VOLUME PRODUCT, Minimal width and diameter of lattice‐point‐free convex bodies, Über eine Vermutung von Hermann Weyl zum Raumproblem, Über die affine Exzentrizität konvexer Körper, Lower bounds of cowidths and widths of multiplier operators, Lineare Halbgruppen mit beschränkten Eigenwerten, On Characterizations of Inner Product Spaces, On the mean value of the volume of a random polytope in a convex set, Variable metric relaxation methods, part II: The ellipsoid method, On the complexity of approximating the maximal inscribed ellipsoid for a polytope



Cites Work