Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal-Lucas sequence

From MaRDI portal
Publication:778253
Jump to:navigation, search

DOI10.1515/ROSE-2020-2033zbMath1447.60074OpenAlexW3012038494MaRDI QIDQ778253

Dmytro Karvatsky, Mykola V. Pratsiovytyi, O. P. Makarchuk

Publication date: 2 July 2020

Published in: Random Operators and Stochastic Equations (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1515/rose-2020-2033


zbMATH Keywords

Bernoulli convolutionJacobsthal-Lucas sequenceJessen-Wintner theoremsingular random variable


Mathematics Subject Classification ID

Sums of independent random variables; random walks (60G50) Metric theory of other algorithms and expansions; measure and Hausdorff dimension (11K55)


Related Items (1)

Fractal functions of exponential type that is generated by the \(Q_2^*\)-representation of argument




Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • On equivalence of infinite product measures
  • Sur les séries dont les termes sont des variables éventuelles indépendantes
  • Convolutions of distributions of random variables with independent binary digits




This page was built for publication: Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal-Lucas sequence

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:778253&oldid=12707258"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 10:47.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki