Estimation of Pickands dependence function of bivariate extremes under mixing conditions
DOI10.1007/s10986-020-09472-yzbMath1443.62127OpenAlexW3008020120MaRDI QIDQ779813
Mohamed Boutahar, Imen Kchaou, Laurence Reboul
Publication date: 14 July 2020
Published in: Lithuanian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10986-020-09472-y
copulasbivariate extreme value distributionnonparametric estimationPickands dependence functionindependence teststrictly stationary processabsolutely regular sequence
Density estimation (62G07) Nonparametric hypothesis testing (62G10) Asymptotic distribution theory in statistics (62E20) Asymptotic properties of nonparametric inference (62G20) Characterization and structure theory for multivariate probability distributions; copulas (62H05) Stationary stochastic processes (60G10) Statistics of extreme values; tail inference (62G32)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
- Nonparametric estimation of multivariate extreme-value copulas
- Using B-splines for nonparametric inference on bivariate extreme-value copulas
- Testing the independence of maxima: from bivariate vectors to spatial extreme fields: asymptotic independence of extremes
- Nonparametric estimation of an extreme-value copula in arbitrary dimensions
- New estimators of the Pickands dependence function and a test for extreme-value dependence
- Weak convergence for weighted empirical processes of dependent sequences
- Rank-based inference for bivariate extreme-value copulas
- Multivariate extreme values in stationary random sequences
- Testing asymptotic independence in bivariate extremes
- On the limiting behavior of the Pickands estimator for bivariate extreme- value distributions
- Sea and wind: multivariate extremes at work
- Distribution and dependence-function estimation for bivariate extreme-value distributions.
- Extreme value theory for multivariate stationary sequences
- Asymptotic theory of weakly dependent stochastic processes
- Nonparametric estimation of the dependence function for a multivariate extreme value distribution
- Strong approximation of the empirical distribution function for absolutely regular sequences in \({\mathbb R}^d\)
- Sur la distribution limite du terme maximum d'une série aléatoire
- Some Limit Theorems for Random Functions. I
- Bivariate Exponential Distributions
- Modelling pairwise dependence of maxima in space
- Bivariate extreme value theory: Models and estimation
- A nonparametric estimation procedure for bivariate extreme value copulas
- Extremes and local dependence in stationary sequences
- Comparison of non-parametric and semi-parametric tests in detecting long memory
- Projection estimators of Pickands dependence functions
- On extreme values in stationary sequences
- Nonparametric estimation of the dependence function in bivariate extreme value distributions