Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Merge two items
In other projects
MaRDI portal item
Discussion
View source
View history
Purge
English
Log in

Mining maximal frequent patterns in transactional databases and dynamic data streams: a Spark-based approach

From MaRDI portal
Publication:781917
Jump to:navigation, search

DOI10.1016/J.INS.2017.11.064zbMath1436.68089DBLPjournals/isci/KarimCBAD18OpenAlexW2774676107WikidataQ55082276 ScholiaQ55082276MaRDI QIDQ781917

Oya Deniz Beyan, Chowdhury Farhan Ahmed, Stefan Decker, Michael Cochez, Mohammad Rezaul Karim

Publication date: 20 July 2020

Published in: Information Sciences (Search for Journal in Brave)

Full work available at URL: http://urn.fi/URN:NBN:fi:jyu-201712184760


zbMATH Keywords

data miningbig dataprime number theorytransactional databasesApache Sparkdynamic data streamsmaximal frequent patternsnull transactions


Mathematics Subject Classification ID

Database theory (68P15)


Related Items (1)

An algebraic semigroup method for discovering maximal frequent itemsets


Uses Software

  • Unnamed Item
  • SparkSW
  • Spark
  • Apache Spark



Cites Work

  • An elementary proof of the prime-number theorem
  • Unnamed Item




This page was built for publication: Mining maximal frequent patterns in transactional databases and dynamic data streams: a Spark-based approach

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:781917&oldid=12717058"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
This page was last edited on 30 January 2024, at 11:04.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki