A moving lemma for relative 0-cycles
From MaRDI portal
Publication:782344
DOI10.2140/ant.2020.14.991zbMath1440.14036arXiv1806.08045OpenAlexW3099077051WikidataQ124993659 ScholiaQ124993659MaRDI QIDQ782344
Amalendu Krishna, Jin Hyun Park
Publication date: 24 July 2020
Published in: Algebra \& Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1806.08045
Grassmannianalgebraic cyclesmoving lemmahigher Chow groupadditive higher Chow grouplinear projection
Algebraic cycles (14C25) Motivic cohomology; motivic homotopy theory (14F42) Algebraic cycles and motivic cohomology ((K)-theoretic aspects) (19E15)
Related Items (2)
Motivic cohomology of fat points in Milnor range via formal and rigid geometries ⋮ De Rham–Witt sheaves via algebraic cycles
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On additive higher Chow groups of affine schemes
- Moving lemma for additive higher Chow groups
- Théoremes de Bertini et applications
- Algebraic cycles and higher K-theory
- Milnor \(K\)-theory of rings, higher Chow groups and applications
- The index of an algebraic variety
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la colloboration de J. Dieudonné
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Lectures on old and new results on algebraic curves
- A moving lemma for cycles with very ample modulus
- The generalized de Rham-Witt complex over a field is a complex of zero-cycles
- On Singular Curves in the Case of Positive Characteristic
- Additive higher Chow groups of schemes
- Regulators on additive higher Chow groups
- Bertini theorems for hypersurface sections containing a subscheme
- A Moving Lemma for Algebraic Cycles With Modulus and Contravariance
- DGA-Structure on Additive Higher Chow Groups
This page was built for publication: A moving lemma for relative 0-cycles