The Wielandt-Hartley theorem for submaximal \(\mathfrak{X}\)-subgroups
From MaRDI portal
Publication:784007
DOI10.1007/s00605-020-01425-4OpenAlexW3102535417MaRDI QIDQ784007
Danila Olegovitch Revin, Andrey V. Vasilev, Saveliĭ Vyacheslavovich Skresanov
Publication date: 5 August 2020
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1910.09785
subnormal subgroupscomplete classfinite nonsolvable groupmaximal \(\mathfrak{X}\)-subgroupssubmaximal \(\mathfrak{X}\)-subgroups
Sylow subgroups, Sylow properties, (pi)-groups, (pi)-structure (20D20) Maximal subgroups (20E28) Subnormal subgroups of abstract finite groups (20D35)
Related Items
The reduction theorem for relatively maximal subgroups ⋮ Submaximal soluble subgroups of odd index in alternating groups ⋮ On embedding theorems for \({\mathfrak{X}}\)-subgroups ⋮ Automorphisms of nonsplit extensions of \(2\)-groups by \(\mathrm{PSL}_2(q)\) ⋮ On \(\pi \)-submaximal subgroups of minimal nonsolvable groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Über den Normalisator der subnormalen Untergruppen
- A proof of the Kegel-Wielandt conjecture on subnormal subgroups
- Classification and properties of the \(\pi \)-submaximal subgroups in minimal nonsolvable groups
- Pronormality and submaximal \(\mathfrak{X}\)-subgroups on finite groups
- Maximal and submaximal \(\mathfrak{X}\)-subgroups
- A theorem of Sylow type for finite groups
- Maximal Subgroups of Automorphism Groups of Simple Groups