Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On the boundedness of invariant hyperbolic domains

From MaRDI portal
Publication:784373
Jump to:navigation, search

DOI10.5802/crmath.42zbMath1452.32023OpenAlexW3041227010MaRDI QIDQ784373

Xiang-Yu Zhou, Jia Fu Ning

Publication date: 3 August 2020

Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.5802/crmath.42


zbMATH Keywords

bounded domaincompact Lie groupKobayashi hyperbolic domain


Mathematics Subject Classification ID

Complex Lie groups, group actions on complex spaces (32M05) Hyperbolic and Kobayashi hyperbolic manifolds (32Q45) Entire functions of several complex variables (32A15) Pseudoconvex domains (32T99)




Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Hyperbolicity of circular domains
  • Geometric invariant theory on Stein spaces
  • Rigidity and regularity in group actions
  • On boundedness of circular domains
  • Envelopes of holomorphy of Hartogs and circular domains
  • The Hilbert series of measures of entanglement for 4 qubits
  • Über das Randverhalten von holomorphen Automorphismen beschränkter Gebiete
  • Proper holomorphic mappings between invariant domains in $\mathbb {C}^n$
  • Geometric Invariant Theory
  • ON ORBIT CONNECTEDNESS, ORBIT CONVEXITY, AND ENVELOPES OF HOLOMORPHY


This page was built for publication: On the boundedness of invariant hyperbolic domains

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:784373&oldid=12723479"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 11:05.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki