\(S\)-prime ideals of a commutative ring
From MaRDI portal
Publication:784769
DOI10.1007/S13366-019-00476-5zbMath1442.13010OpenAlexW2989884293WikidataQ114687568 ScholiaQ114687568MaRDI QIDQ784769
Publication date: 3 August 2020
Published in: Beiträge zur Algebra und Geometrie (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13366-019-00476-5
Integral domains (13G05) Ideals and multiplicative ideal theory in commutative rings (13A15) Chain conditions, finiteness conditions in commutative ring theory (13E99)
Related Items (20)
On S-1-absorbing prime and weakly S-1-absorbing prime ideals ⋮ S-primary ideals of a commutative ring ⋮ S-principal ideal multiplication modules ⋮ When is (D,K) anS-accr pair? ⋮ Some results on \(S\)-primary ideals of a commutative ring ⋮ On graded \(s\)-prime submodules ⋮ On \(S\)-weakly prime ideals of commutative rings ⋮ On $S$-comultiplication modules ⋮ Unnamed Item ⋮ Unnamed Item ⋮ \(S\)-prime ideals, \(S\)-Noetherian noncommutative rings, and the \(S\)-Cohen's theorem ⋮ Unnamed Item ⋮ Quasi- S -primary ideals of commutative rings ⋮ Unnamed Item ⋮ Unnamed Item ⋮ Unnamed Item ⋮ On perfect ideals of seminearrings ⋮ On \(S\)-second spectrum of a module ⋮ On modules satisfying \(S\)-dccr condition ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(S\)-Noetherian properties on amalgamated algebras along an ideal
- Prime ideals in finite extensions of Noetherian rings
- Commutative rings with restricted minimum condition
- Modules Satisfying the S-Noetherian Property and S-ACCR
- S-Noetherian Rings of the Forms 𝒜[X and 𝒜[[X]]]
- A Note on S-Noetherian Domains
- Intersections of prime ideals in noetherian rings
- Unique Factorization Rings with Zero Divisors
- On right S-Noetherian rings and S-Noetherian modules
- UNIQUE FACTORIZATION AND BIRTH OF ALMOST PRIMES
- S-NOETHERIAN RINGS
- On 2-absorbing ideals of commutative rings
- S-Noetherian Properties of Composite Ring Extensions
This page was built for publication: \(S\)-prime ideals of a commutative ring