The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces
DOI10.1007/s13348-019-00262-5zbMath1464.46039arXiv1902.04786OpenAlexW3105241173MaRDI QIDQ785500
Publication date: 7 August 2020
Published in: Collectanea Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1902.04786
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Compactness in Banach (or normed) spaces (46B50) (L^p)-spaces and other function spaces on groups, semigroups, etc. (43A15)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces
- Addendum to ``The Kolmogorov-Riesz compactness theorem [Expo. Math. 28 (2010) 385-394]
- Weighted kernel operators in variable exponent amalgam spaces
- The Kolmogorov-Riesz compactness theorem
- Weighted variable Sobolev spaces and capacity
- From Arzelà-Ascoli to Riesz-Kolmogorov
- Orlicz spaces and modular spaces
- Compact trace in weighted variable exponent Sobolev spaces \(W^{1,p(x)}(\Omega;v_0,v_1)\)
- A compactness criterion for translation invariant Banach spaces of functions
- Compactness in Wiener amalgams on locally compact groups
- Lectures on analysis on metric spaces
- Relatively compact sets in variable-exponent Lebesgue spaces
- An improvement of the Kolmogorov-Riesz compactness theorem
- On the weighted variable exponent amalgam space \(W(L^{p(x)},L^q_m)\)
- Almost everything you need to know about relatively compact sets in variable Lebesgue spaces
- Compactness criteria for Köthe spaces
- Weighted variable exponent amalgam spaces $W(L^{p(x)},L_w^q)$
- Kolmogorov compactness criterion in variable exponent Lebesgue spaces
- Distributions and Operators
- Amalgams of 𝐿^{𝑝} and 𝑙^{𝑞}
- Harmonic Analysis on Amalgams of LP and lq
- On vector-valued classical and variable exponent amalgam spaces
- Compactness criteria in weighted Lebesgue spaces
- On the Boundedness of maximal and potential operators in variable exponent amalgam spaces
- Variable exponent trace spaces
- On the compactness of the function-set by the convergence in mean of general type
This page was built for publication: The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces