Domains without dense Steklov nodal sets
From MaRDI portal
Publication:785655
DOI10.1007/s00041-020-09753-7zbMath1445.35271arXiv1908.03307OpenAlexW3034617403MaRDI QIDQ785655
Jeffrey Galkowski, Oscar P. Bruno
Publication date: 7 August 2020
Published in: The Journal of Fourier Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1908.03307
Boundary value problems for second-order elliptic equations (35J25) Asymptotic distributions of eigenvalues in context of PDEs (35P20)
Related Items
Upper bounds of nodal sets for eigenfunctions of eigenvalue problems ⋮ Some recent developments on the Steklov eigenvalue problem
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A lower bound for the nodal sets of Steklov eigenfunctions
- Hausdorff measure of nodal sets of analytic Steklov eigenfunctions
- Smoothness to the boundary of conformal maps
- Nodal sets of Steklov eigenfunctions
- Partial differential equations. II: Qualitative studies of linear equations
- Pointwise bounds for Steklov eigenfunctions
- Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces
- Polynomial upper bound on interior Steklov nodal sets
- Spectral geometry of the Steklov problem (survey article)
- Interior nodal sets of Steklov eigenfunctions on surfaces
- Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in ℝ d
- Lower bounds for interior nodal sets of Steklov eigenfunctions
- The Steklov spectrum of surfaces: asymptotics and invariants
- Asymptotic Behavior of Stekloff Eigenvalues and Eigenfunctions
- Linear integral equations
This page was built for publication: Domains without dense Steklov nodal sets