Stark's conjecture for L-functions with first-order zeroes at s=0
DOI10.1016/0001-8708(83)90006-3zbMath0528.12012OpenAlexW2091771258WikidataQ123193538 ScholiaQ123193538MaRDI QIDQ786858
Publication date: 1983
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0001-8708(83)90006-3
cyclotomic unitsGalois representationselliptic unitsArtin L-seriesirreducible complex representationcyclotomic Zl-extensionsorder of vanishing at s=0Stark conjecture for dimension one and twotetrahedral representation
Ordinary representations and characters (20C15) Units and factorization (11R27) Class field theory (11R37) Zeta functions and (L)-functions of number fields (11R42) Cyclotomic extensions (11R18)
Related Items (7)
Cites Work
- Stark's conjecture for L-functions with first-order zeroes at s=0
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- A property of L-functions on the real line
- Division values in local fields
- Icosahedral Galois representations
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- The Cohomology Groups of Tori in Finite Galois Extensions of Number Fields
- Endliche Gruppen I
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Stark's conjecture for L-functions with first-order zeroes at s=0