On some convergence properties of Haar-Fourier series in the classes \(\phi\) (L)
From MaRDI portal
Publication:789659
DOI10.1007/BF01956776zbMath0533.42019OpenAlexW2086346922MaRDI QIDQ789659
Publication date: 1983
Published in: Acta Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01956776
Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) (42C10)
Related Items (3)
On the completeness and other properties of some function systems in \(L_p\), \(0<p<\infty\) ⋮ Haar approximation from within for \(L^p(\mathbb{R}^d)\), \(0<p<1\) ⋮ Subsystems of the Haar system in spaces \(E_ \varphi\) with \(\varliminf_{t\to\infty} {{\varphi(t)}\over t}=0\)
Cites Work
- Period, index and potential \(\text Ш\)
- On bases in Orlicz spaces
- Minimal elements of \(\text{И}(H;p)\) and conjugacy of Levi complements in finite Chevalley groups.
- Fourier series and the conjugate function in the classes phi(L)
- Stone Duality for Nominal Boolean Algebras with И
- The Brauer-Manin Obstruction and III[2]
- On some classes of linear spaces
- Представление функций классовL p [0, 1, 0<p<1, ортогональными рядами]
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On some convergence properties of Haar-Fourier series in the classes \(\phi\) (L)