On the set of divisors of an integer
From MaRDI portal
Publication:791574
DOI10.1007/BF01388495zbMath0536.10039OpenAlexW2113856480WikidataQ105836552 ScholiaQ105836552MaRDI QIDQ791574
Gérald Tenenbaum, Helmut Maier
Publication date: 1984
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143119
Asymptotic results on arithmetic functions (11N37) Arithmetic functions in probabilistic number theory (11K65)
Related Items (23)
On Behrend sequences ⋮ Effective mean value estimates for complex multiplicative functions ⋮ Ewens Sampling and Invariable Generation ⋮ Uniform upper bounds for the complex divisor function ⋮ Ω theorems for the complex divisor function ⋮ On arithmetic functions related to consecutive divisors ⋮ Unnamed Item ⋮ Equal sums in random sets and the concentration of divisors ⋮ Divisor-bounded multiplicative functions in short intervals ⋮ Two upper bounds for the Erdős-Hooley delta-function ⋮ Erdős and the integers ⋮ On block Behrend sequences ⋮ On the set of divisors of Gaussian integers ⋮ On the number of divisors which are values of a polynomial ⋮ Maass Waveforms and Low-Lying Zeros ⋮ Mesures quadratiques de la proximité des diviseurs ⋮ Invariable generation of finite classical groups ⋮ On the normal concentration of divisors, 2 ⋮ On the proximity of divisors of integers ⋮ Sets of multiples of finite sequences ⋮ Systèmes de points, diviseurs et structure fractale ⋮ Une inégalité de Hilbert pour les diviseurs. (A Hilbert inequality for divisors) ⋮ Les ensembles de multiples et la densité divisorielle. (Sets of multiples and divisor density)
Cites Work
- Sur la structure de la suite des diviseurs d'un entier. (On the structure of the séquence of divisors of an integer)
- On a result of R. R. Hall
- The average orders of Hooley's Δ r ‐functions
- The Propinquity of Divisors
- On the Average and Normal Orders of Hooley's Δ-Function
- Sums of Imaginary Powers of the Divisors of Integers
- On a New Technique and Its Applications to the Theory of Numbers
- On the density of some sequences of integers
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the set of divisors of an integer