Produits finis de commutateurs dans les \(C^*\)-algèbres
From MaRDI portal
Publication:791842
DOI10.5802/aif.993zbMath0536.46044OpenAlexW2317930831MaRDI QIDQ791842
Georges Skandalis, Pierre De la Harpe
Publication date: 1984
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1984__34_4_169_0
approximately finite \(C^*\)-algebragroup of unitary operatorsstable \(C^*\)-algebrauniversal determinant
Commutators, derivations, elementary operators, etc. (47B47) Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.) (46M20) General theory of (C^*)-algebras (46L05)
Related Items
Algebraic \(K\)-theory of stable \(C^*\)-algebras, On the classification of simple inductive limit \(C^{*}\)-algebras. II: The isomorphism theorem, On the extension of unitary group isomorphisms of unital UHF-algebras, Anomalous symmetries of classifiable C*-algebras, A classification of inductive limit C∗$C^{*}$‐algebras with ideal property, Simplicity, bounded normal generation, and automatic continuity of groups of unitaries, Asymptotic unitary equivalence and classification of simple amenable \(C^{\ast}\)-algebras, Unnamed Item, \(K\)-theory for Rickart \(C^*\)-algebras, COMMUTATORS IN THE JIANG–SU ALGEBRA, Finite sums and products of commutators in inductive limit \(C^ \ast\)- algebras, Commutators and companion matrices over rings of stable rank 1, Normal subgroups of invertibles and of unitaries in a \(C^\ast\)-algebra, Sur la simplicité essentielle du groupe des inversibles et du groupe unitaire dans une \(C^*\)-algèbre simple, Algebraic \(K\)-theory of von Neumann algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Déterminant associé à une trace sur une algèbre de Banach
- Sommes de commutateurs dans les algèbres de von Neumann finies continues
- Finite sums of commutators in \(C^*\)-algebras
- On commutators in ideals of compact operators
- A theorem on compact semi-simple groups
- Commutators in a Semi-Simple Lie Group
- Which Operators are the Self-Commutators of Compact Operators?
- Perturbations of Type I Von Neumann Algebras
- Commutators of compact operators.