Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Generalizations of the spectral theorem for matrices. II. Matrix polynomials over arbitrary fields

From MaRDI portal
Publication:799763
Jump to:navigation, search

DOI10.1016/0024-3795(84)90021-1zbMath0548.15026OpenAlexW2032967098WikidataQ126815487 ScholiaQ126815487MaRDI QIDQ799763

Robert E. Hartwig

Publication date: 1984

Published in: Linear Algebra and its Applications (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0024-3795(84)90021-1

zbMATH Keywords

matrix polynomialsspectral theoremDrazin inversesfunctions of real matricesgeneralized interpolation


Mathematics Subject Classification ID

Theory of matrix inversion and generalized inverses (15A09) Eigenvalues, singular values, and eigenvectors (15A18) Norms of matrices, numerical range, applications of functional analysis to matrix theory (15A60)


Related Items

Bounds on the exponent of primitivity which depend on the spectrum and the minimal polynomial, Generalized polynomial bases and the Bézoutian, Proof of a conjecture about the exponent of primitive matrices, A bound on the exponent of a primitive matrix using Boolean rank



Cites Work

  • Proceedings of Liverpool singularities-symposium. I
  • On the Derivative of the Drazin Inverse of a Complex Matrix
  • A Note on Jacobson Chains
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:799763&oldid=12737055"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 12:05.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki