Some Phragmén-Lindelöf and harmonic majorization theorems for subharmonic functions
DOI10.1016/0022-247X(84)90210-5zbMath0552.31002OpenAlexW2069825088MaRDI QIDQ801440
Stephen J. Gardiner, David H. Armitage
Publication date: 1984
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-247x(84)90210-5
Dirichlet problemMartin boundaryharmonic measurePhragmén-Lindelöf theoremsubharmonic functionharmonic majorantsmethods of Perron-Wiener-Brelot
Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Integral representations, integral operators, integral equations methods in higher dimensions (31B10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel
- Comparisons of Kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains
- Hardy classes on Riemann surfaces
- Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann
- A Phragmén-Lindelöf Theorem for Subharmonic Functions
- A Strong Type of Regularity for the PWB Solution of the Dirichlet Problem
- Remarks on Carleman’s Formula for Functions in a Half-Plane
- On Half-Spherical Means of Subharmonic Functions in Half-Spaces
- Positive Harmonic Functions on Lipschitz Domains
- Harmonic Majorizations in Half-Balls and Half-Spaces
- Mean Value and Phragmén-Lindelöf Theorems for Subharmonic Functions in Strips
- A boundary harnack principle for lipschitz domains and the principle of positive singularities
- Positive Harmonic Majorization of Subharmonic Functions in Strips
- Theorems concerning functions subharmonic in a strip
This page was built for publication: Some Phragmén-Lindelöf and harmonic majorization theorems for subharmonic functions