On the resolution of index form equations in biquadratic number fields. I
From MaRDI portal
Publication:802647
DOI10.1016/0022-314X(91)90090-XzbMath0726.11022OpenAlexW2029775181MaRDI QIDQ802647
István Gaál, Attila Pethoe, Michael E. Pohst
Publication date: 1991
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-314x(91)90090-x
Computer solution of Diophantine equations (11Y50) Class field theory (11R37) Cubic and quartic extensions (11R16) Diophantine equations (11D99)
Related Items
Monogenic biquadratic fields, On the Resolution of Index Form Equations in Dihedral Quartic Number Fields, Complete solutions of a family of quartic Thue and index form equations, Computing all power integral bases in orders of totally real cyclic sextic number fields, The Solution of Triangularly Connected Decomposable Form Equations, Optimal systems of fundamental \(S\)-units for LLL-reduction, MONOGENEITY IN CYCLOTOMIC FIELDS, Computing all monogeneous mixed dihedral quartic extensions of a quadratic field, Establishing the minimal index in a parametric family of bicyclic biquadratic fields, On the resolution of index form equations in biquadratic number fields. II, On a problem of Hasse for certain imaginary Abelian fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the resolution of Thue inequalities
- Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains
- Berechnung unabhängiger Einheiten und Klassenzahlen in total reellen biquadratischen Zahlkörpern
- The diophantine equation \(y^2+k=x^3\).
- On Mordell's Equation y 2 - k = x 3 : A Problem of Stolarsky
- Computing All Power Integral Bases of Cubic Fields
- On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences.
- Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper.
- THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2