Distribution function inequalities for the density of the area integral
DOI10.5802/aif.1252zbMath0727.42016OpenAlexW2334224830MaRDI QIDQ803463
Charles N. Moore, Rodrigo Bañuelos
Publication date: 1991
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1991__41_1_137_0
area integralmaximal functionlocal timemaximal densitydistribution function inequalitiesgood-\(\lambda \) inequalitiesiterated logarithm for harmonic functionsnontangential
Maximal functions, Littlewood-Paley theory (42B25) Strong limit theorems (60F15) Local time and additive functionals (60J55) Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions (31A20) Probabilistic methods for one variable harmonic analysis (42A61)
Related Items (1)
Cites Work
- The density of the area integral in \({\mathbb{R}}_+^{n+1}\)
- Some weighted norm inequalities concerning the Schrödinger operators
- Densité de l'intégrale d'aire dans \({\mathbb{R}}_+^{n+1}\) et limites non tangentielles. (Density of the area integral in \({\mathbb{R}}_ +^{n+1}\) and non-tangential limits)
- Classe L Log L et densité de l'intégrale d'aire dans \(R_+^{n+1}\). (The class L Log L and the density of the surface integral in \(R_+^{n+1})\)
- An analogue for harmonic functions of Kolmogorov's law of the iterated logarithm
- Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times
- An iterated logarithm law for local time
- Sharp Estimates for the Nontangential Maximal Function and the Lusin Area Function in Lipschitz Domains
- Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain
- (Semi-) martingale inequalities and local times
- Distribution function inequalities for the area integral
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Distribution function inequalities for the density of the area integral