Concernant la relation de distribution satisfaite par la fonction \(\phi\) associée à un réseau complexe. (On the distribution relation satisfied by the function \(\phi\) associated to a complex lattice)
DOI10.1007/BF01231186zbMath0729.11029OpenAlexW2048969749MaRDI QIDQ805661
Publication date: 1990
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/143784
Modular and automorphic functions (11F03) Lattices and convex bodies (number-theoretic aspects) (11H06) Elliptic curves (14H52) Arithmetic algebraic geometry (Diophantine geometry) (11G99) Dedekind eta function, Dedekind sums (11F20) Elliptic functions and integrals (33E05)
Related Items (14)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Calculus on arithmetic surfaces
- Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication
- \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)
- Some applications of Kronecker's limit formulas
- Integrality Properties of the Values of Partial Zeta Functions
- Nombres de Hurwitz et unités elliptiques. Un critère de régularité pour les extensions abéliennes d'un corps quadratique imaginaire
- A simple proof of η(— 1/τ)= η(τ)√τ/i
This page was built for publication: Concernant la relation de distribution satisfaite par la fonction \(\phi\) associée à un réseau complexe. (On the distribution relation satisfied by the function \(\phi\) associated to a complex lattice)