Taut foliations of \(3\)-manifolds and suspensions of \(S^ 1\)
From MaRDI portal
Publication:811545
DOI10.5802/aif.1289zbMath0736.57010OpenAlexW2315309061MaRDI QIDQ811545
Publication date: 1992
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1992__42_1-2_193_0
Dehn fillingtaut foliationReeb componentboundary contains a single toruscompact oriented 3-manifoldfoliation induced on boundary
Related Items
Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation ⋮ Heegaard surfaces and measured laminations. I: the Waldhausen conjecture ⋮ \(C^0\) approximations of foliations ⋮ Classifying the expanding attractors on the figure‐eight knot exterior and the non‐transitive Anosov flows on the Franks–Williams manifold ⋮ Anosov flows on Dehn surgeries on the figure-eight knot ⋮ Laminar branched surfaces in 3--manifolds ⋮ Foliations, orders, representations, L-spaces and graph manifolds ⋮ Group actions on order trees ⋮ Persistently foliar composite knots
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Closed incompressible surfaces in alternating knot and link complements
- Pseudo-Anosov maps and surgery on fibred 2-bridge knots
- Producing reducible 3-manifolds by surgery on a knot
- Quasi-Fuchsian Seifert surfaces
- Constructing lens spaces by surgery on knots
- Plongements dans les variétés feuilletees et classification de feuilletages sans holonomie
- Essential laminations in 3-manifolds
- Sur les courbes definies par les équations différentielles à la surface du tore
- Essential laminations in Seifert-fibered spaces
- Foliations by planes
- Essential Laminations in Surgered 3-Manifolds