Noether-Lefschetz locus for Beilinson-Hodge cycles. I
From MaRDI portal
Publication:811841
DOI10.1007/s00209-005-0813-xzbMath1088.14003OpenAlexW1988132138MaRDI QIDQ811841
Publication date: 23 January 2006
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00209-005-0813-x
Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30) (Equivariant) Chow groups and rings; motives (14C15)
Related Items (1)
Cites Work
- Complete intersections with middle Picard number 1 defined over \({\mathbb{Q}}\)
- A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces
- Algebraic cycles and higher K-theory
- Continuous étale cohomology
- Components of maximal dimension in the Noether-Lefschetz locus
- A new proof of the explicit Noether-Lefschetz theorem
- The Abel-Jacobi map for complete intersections
- Une précision concernant le théorème de Noether. (A precision concerning the theorem of Noether)
- The coniveau filtration and non-divisibility for algebraic cycles
- Algebraic cycles and Hodge theoretic connectivity
- Maximal components of Noether-Lefschetz locus for Beilinson-Hodge cycles
- Rational equivalence of O-cycles on surfaces
- On the periods of certain rational integrals. I, II
- Théorie de Hodge. II. (Hodge theory. II)
- Sur les séries $L$ d'une variété algébrique
- On the Locus of Hodge Classes
- Generalized Jacobian rings for open complete intersections
- Mixed Hodge modules
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Noether-Lefschetz locus for Beilinson-Hodge cycles. I