On the smallest poles of Igusa's \(p\)-adic zeta functions
DOI10.1007/s00209-005-0864-zzbMath1118.14028arXivmath/0509042OpenAlexW1975548483MaRDI QIDQ811849
Publication date: 23 January 2006
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0509042
Singularities in algebraic geometry (14B05) Global theory and resolution of singularities (algebro-geometric aspects) (14E15) Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80) Congruences in many variables (11D79) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Zeta functions and (L)-functions (11S40)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lectures on forms of higher degree. Notes by S. Raghavan
- Newton polyhedra and the poles of Igusa's local zeta function
- The distribution \(|v|^\lambda\), oscillating integrals and principal value integrals
- Newton polyhedra and Igusa's local zeta function
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- Fonctions D'Igusa p-adiques et Polynomes de Berstein
- On the Degree of Igusa's Local Zeta Function
- Relations Between Numerical Data of an Embedded Resolution
- Poles of Igusa's local zeta function and monodromy
- On the smallest poles of topological zeta functions
- Fonctions zêta locales d'Igusa à plusieurs variables, intégration dans les fibres, et discriminants
This page was built for publication: On the smallest poles of Igusa's \(p\)-adic zeta functions