Convex solutions of polynomial-like iterative equations

From MaRDI portal
Publication:819021

DOI10.1016/j.jmaa.2005.10.006zbMath1090.39012OpenAlexW2077957559MaRDI QIDQ819021

Bing Xu, Kazimierz Nikodem, Wei Nian Zhang

Publication date: 22 March 2006

Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/32575



Related Items

Hyers-Ulam stability of the iterative equation with a general boundary restriction, Strongly convex solutions of a polynomial-like iterative equation with variable coefficients, Unbounded solutions of an iterative-difference equation, Decreasing solutions and convex solutions of the polynomial-like iterative equation, Strongly convex solutions of an iterative functional equation, Convex solutions of the multi-valued iterative equation of order \(n\), Convex solutions to polynomial-like iterative equations on open intervals, On a Zoltán Boros' problem connected with polynomial-like iterative equations, Interval homeomorphic solutions of a functional equation of nonautonomous iterations, Periodic and continuous solutions of a polynomial-like iterative equation, Strongly convex solutions of polynomial-like iterative equation, Construction of usc solutions for a multivalued iterative equation of order \(n\), Convexity of solutions for an iterative equation in Banach spaces, Differentiable solutions of equations involving iterated functional series, Existence of solutions of polynomial-like iterative equation with discontinuous known functions, Bounded or unbounded solutions of a functional equation with nonautonomous iteration, On series-like iterative equation with a general boundary restriction, The \(C^1\) solutions of the series-like iterative equation with variable coefficients, Hyers-Ulam stability of iterative equation in the class of Lipschitz functions, Construction of convex solutions for the second type of Feigenbaum's functional equations, HOMEOMORPHISMS RELATED TO THE POLYNOMIAL-LIKE ITERATIVE EQUATION ON <inline-formula><tex-math id="M1">$\mathbb{S}^1$</tex-math></inline-formula>



Cites Work