\(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensions
From MaRDI portal
Publication:819869
DOI10.5802/jtnb.513zbMath1091.11041OpenAlexW136267758WikidataQ122980672 ScholiaQ122980672MaRDI QIDQ819869
David Vauclair, Thong Nguyen Quang Do
Publication date: 30 March 2006
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2005__17_2_669_0
Iwasawa theory (11R23) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) (K)-theory of global fields (11R70)
Related Items (5)
Cup product, étale capitulation kernels and generalized Greenberg conjecture ⋮ Structure of fine Selmer groups in abelian \(p\)-adic Lie extensions ⋮ Tate kernels and capitulation ⋮ On duality and Iwasawa descent ⋮ On Greenberg's generalized conjecture
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cup product, étale capitulation kernels and generalized Greenberg conjecture
- Über gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Regulators and Iwasawa modules
- Alexander ideals of links
- Relations between \(K_2\) and Galois cohomology
- A cup product in the Galois cohomology of number fields
- Greenberg conjectures and free pro-\(p\)-extensions of a number field
- On universal norms in \(\mathbb{Z}_ p\)-extensions
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- Galois descent and \(K_ 2\) of number fields
- On \(K_2\) and some classical conjectures in algebraic number theory
- Greenberg's conjecture and units in multiple [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" / p -extensions]
- On the Iwasawa Invariants of Totally Real Number Fields
- On capitulation cokernels in Iwasawa theory
- On the wild kernel of number fields and the group of logarithmic classes
This page was built for publication: \(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensions