On the ring of \(p\)-integers of a cyclic \(p\)-extension over a number field
From MaRDI portal
Publication:819879
DOI10.5802/jtnb.520zbMath1153.11335OpenAlexW1978689418MaRDI QIDQ819879
Publication date: 30 March 2006
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2005__17_3_779_0
Cyclotomic extensions (11R18) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items
Biographical Sketch of Professor Humio Ichimura, Note on Galois descent of a normal integral basis of acyclic extension of degree \(p\), Hilbert-Speiser number fields and Stickelberger ideals
Cites Work
- Unnamed Item
- Unnamed Item
- Bases normales, unités et conjecture faible de Leopoldt. (Normal bases, units, and the weak Leopoldt conjecture)
- On Vandiver's conjecture and \({\mathbb{Z}}_ p\)-extensions of \({\mathbb{Q}}(\zeta_{p^ n})\)
- Cyclic Galois extensions of commutative rings
- Normal integral bases in Kummer extensions of prime degree
- On the Iwasawa invariants of certain real abelian fields
- On the ring of integers of a tame Kummer extension over a number field.
- On normal integral bases in ray class fields over imaginary quadratic fields
- Normal integral bases and the Spiegelungssatz of Scholz
- ON A THEOREM OF CHILDS ON NORMAL BASES OF RINGS OF INTEGERS
- Normal integral bases and ray class groups
- A note on integral bases of unramified cyclic extensions of prime degree. II