On \(\mathcal{N} = 2\) supersymmetric Ruijsenaars-Schneider models
DOI10.1016/j.physletb.2020.135545zbMath1473.81078arXiv2005.06486OpenAlexW3025146446MaRDI QIDQ821419
Sergey Krivonos, Olaf Lechtenfeld
Publication date: 20 September 2021
Published in: Physics Letters. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2005.06486
Selfadjoint operator theory in quantum theory, including spectral analysis (81Q10) Supersymmetry and quantum mechanics (81Q60) Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics (81S30) Poisson algebras (17B63) (n)-body problems (70F10) Formal methods and deformations in algebraic geometry (14D15) Particle exchange symmetries in quantum theory (general) (81V72)
Related Items (2)
Cites Work
- Many-particle mechanics with \(D(2, 1; {\alpha})\) superconformal symmetry
- A new class of integrable systems and its relation to solitons
- Ruijsenaars-Schneider three-body models with \(N=2\) supersymmetry
- \(\mathcal{N}\)-extended supersymmetric Calogero models
- Extended supersymmetric Calogero model
- (Super)conformal many-body quantum mechanics with extended supersymmetry
- The physics and mathematics of Calogero particles
- Super Lax pairs and infinite symmetries in the 1/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">r</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>system
- Hidden algebras of the (super) Calogero and Sutherland models
- Evaluation and Normalization of Jack Superpolynomials
- Erratum: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials [J. Math. Phys. 12, 419–436 (1971)]
- Supersymmetric Calogero-Moser-Sutherland models and Jack superpolynomials
This page was built for publication: On \(\mathcal{N} = 2\) supersymmetric Ruijsenaars-Schneider models