Purely Rickart and dual purely Rickart objects in Grothendieck categories
DOI10.1007/s00009-021-01859-6zbMath1476.18003OpenAlexW3197247052MaRDI QIDQ821537
Publication date: 20 September 2021
Published in: Mediterranean Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00009-021-01859-6
regular categorymoduleabelian categoryGrothendieck categorycomodule(dual) Baer object(dual) purely Baer object(dual) purely Rickart object(dual) Rickart objectflat objectpure subobjectregular object
Module categories in associative algebras (16D90) Abelian categories, Grothendieck categories (18E10) von Neumann regular rings and generalizations (associative algebraic aspects) (16E50) Coalgebras and comodules; corings (16T15)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Direct sums of Rickart modules.
- On the free product of associative rings
- Relative regular objects in categories.
- Perfect categories. I
- Rickart and dual Rickart objects in abelian categories: transfer via functors
- Rickart and dual Rickart objects in abelian categories
- Relative homological algebra and Abelian groups
- Pure submodules
- Purity in functor categories
- Dual Rickart Modules
- Classes of extensions and resolutions
- ON DUAL BAER MODULES
- Weak Rickart and dual weak Rickart objects in abelian categories
- Purely Baer modules and purely Rickart modules
- Rickart Modules
This page was built for publication: Purely Rickart and dual purely Rickart objects in Grothendieck categories