A double nonmonotone quasi-Newton method for nonlinear complementarity problem based on piecewise NCP functions
From MaRDI portal
Publication:826387
DOI10.1155/2020/6642725zbMath1459.90215OpenAlexW3111690672MaRDI QIDQ826387
Zilun Wang, Zhensheng Yu, Ke Su
Publication date: 4 January 2021
Published in: Mathematical Problems in Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2020/6642725
Nonlinear programming (90C30) Methods of quasi-Newton type (90C53) Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) (90C33)
Related Items
Cites Work
- Unnamed Item
- A note on economic equilibrium and financial networks
- A smoothing Broyden-like method with a nonmonotone derivative-free line search for nonlinear complementarity problems
- A new smoothing Broyden-like method for solving nonlinear complementarity problem with a \(P_{0}\)-function
- NE/SQP: A robust algorithm for the nonlinear complementarity problem
- Smoothing functions and smoothing Newton method for complementarity and variational inequality problems
- Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications
- On convergence of a smoothing Broyden-like method for \(P_0\)-NCP
- Globally convergent Jacobian smoothing inexact Newton methods for NCP
- On NCP-functions
- Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations
- A semismooth equation approach to the solution of nonlinear complementarity problems
- A theoretical and numerical comparison of some semismooth algorithms for complementarity problems
- A penalized Fischer-Burmeister NCP-function
- NCP functions applied to Lagrangian globalization for the nonlinear complementarity problem
- A smoothing Newton method for nonlinear complementarity problems
- A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix
- A New Nonsmooth Equations Approach to Nonlinear Complementarity Problems
- A special newton-type optimization method
- Engineering and Economic Applications of Complementarity Problems
- Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities
- Jacobian Smoothing Methods for Nonlinear Complementarity Problems
- Global Methods for Nonlinear Complementarity Problems
- A FULL MULTIGRID METHOD FOR LINEAR COMPLEMENTARITY PROBLEMS ARISING FROM ELASTIC NORMAL CONTACT PROBLEMS
- A smooth Newton method with 3-1 piecewise NCP function for generalized nonlinear complementarity problem
- Benchmarking optimization software with performance profiles.