A Zaremba-type criterion for hypoelliptic degenerate Ornstein-Uhlenbeck operators
From MaRDI portal
Publication:827511
DOI10.3934/dcdss.2020112zbMath1455.35059OpenAlexW2982618075MaRDI QIDQ827511
Publication date: 12 January 2021
Published in: Discrete and Continuous Dynamical Systems. Series S (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3934/dcdss.2020112
Dirichlet problemboundary regularityexterior cone criterionPerron-Wiener solutionaxiomatic potential theory
Boundary value problems for second-order elliptic equations (35J25) Degenerate elliptic equations (35J70) Axiomatic potential theory (31D05) Hypoelliptic equations (35H10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Harnack inequality for hypoelliptic second order partial differential operators
- On the Ornstein Uhlenbeck operator perturbed by singular potentials in \(L^p\)-spaces
- Global \(L^{p}\) estimates for degenerate Ornstein-Uhlenbeck operators
- On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion
- Maximal regularity for Kolmogorov operators in \(L^{2}\) spaces with respect to invariant measures
- Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups
- Null-controllability of non-autonomous Ornstein-Uhlenbeck equations
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential
This page was built for publication: A Zaremba-type criterion for hypoelliptic degenerate Ornstein-Uhlenbeck operators