Polynomial values of sums of hyperbolic binomial coefficients
From MaRDI portal
Publication:829346
DOI10.7169/facm/1831zbMath1480.11036OpenAlexW2982269207WikidataQ115478552 ScholiaQ115478552MaRDI QIDQ829346
Publication date: 5 May 2021
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1572055510
Chebyshev polynomialsrecurrence sequencesPascal trianglehyperbolic Pascal trianglepolynomial valuespower values
Factorials, binomial coefficients, combinatorial functions (05A10) Recurrences (11B37) Higher degree equations; Fermat's equation (11D41)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On products of disjoint blocks of arithmetic progressions and related equations
- On the hyperbolic Pascal pyramid
- Hyperbolic Pascal triangles
- On \(S\)-integral solutions of the equation \(y^ m=f(x)\)
- On the Diophantine equation \(x(x + 1)(x + 2)\dots (x + (m - 1)) =g(y)\)
- Polynomial values of sums of products of consecutive integers
- Fibonacci words in hyperbolic Pascal triangles
- Decomposition of a recursive family of polynomials
- Complete decomposition of Dickson-type polynomials and related Diophantine equations
- Diophantine Equations for Second-Order Recursive Sequences of Polynomials
- Power values of sums of products of consecutive integers
- Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic $\{4,5\}
- On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences.
- On the equation $y^m = P(x)$
- On the diophantine equation ${n \choose k} = x^l$
- On the diophantine equation x(x-1)...(x-(m-1 ) )= λy(y-1 )...(y-(n-1 ) )+ l
- The Diophantine equation f(x) = g(y)
- The Diophantine equation x(x+1)...(x+(m-1)) + r= yn
- Equal values of standard counting polynomials
- Power sums in hyperbolic Pascal triangles
- Alternating sums in hyperbolic Pascal triangles
- A Diophantine Problem
- On a Diophantine Equation
- Regular Honeycombs in Elliptic Space
This page was built for publication: Polynomial values of sums of hyperbolic binomial coefficients