Application of Padé approximation to Euler's constant and Stirling's formula
From MaRDI portal
Publication:829868
DOI10.1007/s11139-019-00201-9zbMath1471.11291OpenAlexW2943283061MaRDI QIDQ829868
Publication date: 6 May 2021
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-019-00201-9
gamma functionorthogonal polynomialsPadé approximantsBernoulli numbersStirling's formuladigamma functionEuler's constant
Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Padé approximation (41A21) Irrationality; linear independence over a field (11J72) Evaluation of number-theoretic constants (11Y60)
Related Items
Series acceleration via negative binomial probabilities, New convergent sequences of approximations to Stieltjes' constants
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Remainder Padé approximants for the Hurwitz zeta function
- Padé-type approximation and general orthogonal polynomials
- Euler numbers, Padé approximants and Catalan's constant
- Legendre modified moments for Euler's constant
- A new proof of the irrationality of \(\zeta (2)\) and \(\zeta (3)\) using Padé approximants
- Nombres Exponentiels Et Nombres De Bernoulli
- Rational approximations for values of derivatives of the Gamma function
- Some Hypergeometric Orthogonal Polynomials
- A Set of Hypergeometric Orthogonal Polynomials