A new formula for the \(L^p\) norm
From MaRDI portal
Publication:831120
DOI10.1016/j.jfa.2021.109075zbMath1476.46042arXiv2102.09657OpenAlexW3159637771MaRDI QIDQ831120
Publication date: 10 May 2021
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2102.09657
fractional Sobolev spaceBourgain-Brezis-Mironescu formulaMaz'ya-Shaposhnikova formulaweak-\( L^p\) space
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items
Poincaré inequality meets Brezis-Van Schaftingen-Yung formula on metric measure spaces ⋮ A weak-type expression of the Orlicz modular ⋮ Anisotropic versions of the Brezis-Van Schaftingen-Yung approach at \(s = 1\) and \(s = 0\) ⋮ Generalized Brezis-Seeger-Van Schaftingen-Yung formulae and their applications in ball Banach Sobolev spaces ⋮ Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces ⋮ Bourgain-Brezis-Mironescu-Maz'ya-Shaposhnikova limit formulae for fractional Sobolev spaces via interpolation and extrapolation ⋮ Brezis-van Schaftingen-Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo-Nirenberg inequalities ⋮ Gagliardo representation of norms of ball quasi-Banach function spaces ⋮ The Bourgain-Brezis-Mironescu formula on ball Banach function spaces ⋮ Sobolev spaces revisited ⋮ New Brezis-van Schaftingen-Yung-Sobolev type inequalities connected with maximal inequalities and one parameter families of operators ⋮ Spaces of Besov-Sobolev type and a problem on nonlinear approximation
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An introductory course in Lebesgue spaces
- Hitchhiker's guide to the fractional Sobolev spaces
- Theory of function spaces
- On an open question about functions of bounded variation.
- Limiting embedding theorems for \(W^{s,p}\) when \(s\uparrow 1\) and applications
- On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces
- Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung
- New Brezis-van Schaftingen-Yung-Sobolev type inequalities connected with maximal inequalities and one parameter families of operators
- Classical Fourier Analysis
- Sobolev Spaces
This page was built for publication: A new formula for the \(L^p\) norm