Extrapolation and the boundedness in grand variable exponent Lebesgue spaces without assuming the log-Hölder continuity condition, and applications
DOI10.1007/S00041-022-09919-5zbMath1485.42036OpenAlexW4293100275MaRDI QIDQ831771
Vakhtang Kokilashvili, Alexander Meskhi
Publication date: 24 March 2022
Published in: The Journal of Fourier Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00041-022-09919-5
boundednessmaximal operatorBernstein inequalitysingular integralsweighted extrapolationgrand variable exponent Lebesgue spaces
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Function spaces arising in harmonic analysis (42B35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted extrapolation in Iwaniec-Sbordone spaces. Applications to integral operators and approximation theory
- Sharp weighted bounds involving \(A_\infty\)
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Maximal and Calderón-Zygmund operators in grand variable exponent Lebesgue spaces
- Integral operators in non-standard function spaces. Volume 1: Variable exponent Lebesgue and amalgam spaces
- Integral operators in non-standard function spaces. Volume 2: Variable exponent Hölder, Morrey-Campanato and Grand spaces
- Lebesgue and Sobolev spaces with variable exponents
- Extrapolation of weights revisited: new proofs and sharp bounds
- Topology of the space \(\mathcal L^{p(t)}([0,t)\)]
- On the integrability of the Jacobian under minimal hypotheses
- Inverting the \(p\)-harmonic operator
- Duality and reflexivity in grand Lebesgue spaces
- Extrapolation from \(A_{\infty}\) weights and applications
- Definability of singular integral operators on Morrey-Banach spaces
- \(H^p\) spaces of several variables
- Maximal functions on Musielak--Orlicz spaces and generalized Lebesgue spaces
- Infimal convolution and Muckenhoupt \(A_{p(\cdot)}\) condition in variable \(L^p\) spaces
- Extrapolation and weighted norm inequalities in the variable Lebesgue spaces
- Convolution type operators inlp(x)
- Maximal function on generalized Lebesgue spaces L^p(⋅)
- Hardy-Littlewood maximal operator on L^p(x) (ℝ)
- Classical Fourier Analysis
- Sobolev‐type inequalities for potentials in grand variable exponent Lebesgue spaces
- Weighted Norm Inequalities for the Conjugate Function and Hilbert Transform
This page was built for publication: Extrapolation and the boundedness in grand variable exponent Lebesgue spaces without assuming the log-Hölder continuity condition, and applications