Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects
From MaRDI portal
Publication:833880
DOI10.1016/j.ijsolstr.2007.08.012zbMath1167.74476OpenAlexW2088912703MaRDI QIDQ833880
Jiann-Quo Tarn, Hsi-Hung Chang
Publication date: 14 August 2009
Published in: International Journal of Solids and Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.ijsolstr.2007.08.012
Related Items
A circular elastic cylinder under its own weight ⋮ Bounds for the torsional rigidity of inhomogeneous cylindrical bars ⋮ Torsional stresses near the bonded interface of a tube-to-tube connected cylindrically orthotropic circular shaft with radial inhomogeneity ⋮ A Hamiltonian state space approach for 3D analysis of circular cantilevers ⋮ Some end effects in a cylindrically orthotropic circular tube of finite length with radial inhomogeneity subjected to torsional loads ⋮ Material tailoring and universal relations for axisymmetric deformations of functionally graded rubberlike cylinders and spheres ⋮ Effect of a longitudinal crack on the flexural performance of bamboo culms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Torsion of functionally graded isotropic linearly elastic bars
- Saint-Venant decay rates for an isotropic inhomogeneous linearly elastic solid in anti-plane shear
- Time-dependent stress analysis in functionally graded materials
- A state space formalism for anisotropic elasticity. II: Cylindrical anisotropy.
- On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part I: Methodology for Saint-Venant Solutions
- On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part II: Cross-Sectional Properties
- On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part III: End Effects
- New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar
- Exact solutions of a piezoelectric circular tube or bar under extension, torsion, pressuring, shearing, uniform electric loading and temperature change
- Saint-Venant torsion of anisotropic shafts: theoretical frameworks, extremal bounds and affine transformations
- Analysis of laminated circular cylinders of materials with the most general form of cylindrical anisotropy. I: Axially symmetric deformations. II: Flexural deformations
- Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads
- Laminated composite tubes under extension, torsion, bending, shearing and pressuring: A state space approach