Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics
From MaRDI portal
Publication:834743
DOI10.1007/s00205-008-0144-2zbMath1173.81025arXivmath-ph/0606001OpenAlexW4301901864MaRDI QIDQ834743
Christian Hainzl, Mathieu Lewin, Éric Séré
Publication date: 27 August 2009
Published in: Archive for Rational Mechanics and Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math-ph/0606001
Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) Atomic physics (81V45) Molecular physics (81V55) Variational principles of physics (49S05)
Related Items
Static electron-positron pair creation in strong fields for a non-linear Dirac model ⋮ On derivation of the Poisson-Boltzmann equation ⋮ A positive density analogue of the Lieb-Thirring inequality ⋮ A new definition of the Dirac-Fock ground state ⋮ Renormalization and asymptotic expansion of Dirac's polarized vacuum ⋮ Variational methods in relativistic quantum mechanics ⋮ The Hartree equation for infinitely many particles. I: Well-posedness theory ⋮ Mean-field model for the junction of two quasi-1-dimensional quantum Coulomb systems ⋮ Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals ⋮ The dielectric permittivity of crystals in the reduced Hartree-Fock approximation ⋮ The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics ⋮ Ground state and charge renormalization in a nonlinear model of relativistic atoms ⋮ A new approach to the modeling of local defects in crystals: The reduced Hartree-Fock case ⋮ Semi-classical Dirac vacuum polarisation in a scalar field ⋮ A reduced Hartree–Fock model of slice-like defects in the Fermi sea ⋮ The Scott correction in Dirac-Fock theory ⋮ Ground state properties of graphene in Hartree-Fock theory ⋮ On the modeling of interactions between polarons in quantum cristals
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The concentration-compactness principle in the calculus of variations. The locally compact case. II
- Existence of the spontaneous pair creation in the external field approximation of Q.E.D
- Error bound for the Hartree-Fock energy of atoms and molecules
- On the stability of the relativistic electron-positron field
- The index of a pair of projections
- On the eigenvalues of operators with gaps. Application to Dirac operators
- Solutions of the Dirac-Fock equations for atoms and molecules
- Solutions of Hartree-Fock equations for Coulomb systems
- Existence of atoms and molecules in non-relativistic quantum electrodynamics
- Generalized Hartree-Fock theory and the Hubbard model
- Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation
- Vacuum Polarization Effects on Energy Levels in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>μ</mml:mi></mml:math>-Mesonic Atoms
- The mean-field approximation in quantum electrodynamics: The no-photon case
- A Smooth Variational Principle With Applications to Subdifferentiability and to Differentiability of Convex Functions
- Strict Positivity of a Relativistic Hamiltonian Due to Brown and Ravenhall
- Self-consistent solution for the polarized vacuum in a no-photon QED model
- Quantum Electrodynamics. I. A Covariant Formulation
- Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy
- On Gauge Invariance and Vacuum Polarization
- Some Physical Consequences of Vacuum Polarization
- Solutions of the Dirac-Fock equations without projector.
- Renormalization of the regularized relativistic electron-positron field
- Ground states in non-relativistic quantum electrodynamics.
- Nonrelativistic limit of the Dirac-Fock equations