A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\).
From MaRDI portal
Publication:837037
DOI10.1016/j.jalgebra.2009.03.033zbMath1179.20045OpenAlexW2170238231MaRDI QIDQ837037
Publication date: 10 September 2009
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2009.03.033
Representation theory for linear algebraic groups (20G05) Generators, relations, and presentations of groups (20F05) Rings with involution; Lie, Jordan and other nonassociative structures (16W10) Other matrix groups over rings (20H25)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quadratic Gauss sums over finite commutative rings
- The Weil representation, Maslov index and theta series
- A Bruhat decomposition of the group \(\text{Sl}_*(2,A)\).
- A presentation of the group \(\text{Sl}_*(2,A)\), \(A\) a simple Artinian ring with involution.
- Sur certains groupes d'opérateurs unitaires
- Weil Representations of Symplectic Groups Over Rings
This page was built for publication: A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\).