Depth two Hopf subalgebras of a semisimple Hopf algebra.
From MaRDI portal
Publication:837045
DOI10.1016/j.jalgebra.2009.03.015zbMath1184.16030OpenAlexW2003877536MaRDI QIDQ837045
Lars Kadison, Sebastian Burciu
Publication date: 10 September 2009
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2009.03.015
Related Items (3)
Depth one extensions of semisimple algebras and Hopf subalgebras. ⋮ The depth of Young subgroups of symmetric groups. ⋮ On normal Hopf subalgebras of semisimple Hopf algebras.
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Biinvertible actions of Hopf algebras
- The endomorphism ring theorem for Galois and depth two extensions.
- Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple
- Normal basis and transitivity of crossed products for Hopf algebras
- Bialgebroid actions on depth two extensions and duality.
- Weak Hopf algebras. I: Integral theory and \(C^*\)-structure
- Anchor maps and stable modules in depth two.
- Hopf algebroids and Galois extensions.
- Characters of Hopf algebras
- Similarity, Codepth Two Bicomodules and QF Bimodules
- Semisolvability of semisimple Hopf algebras of low dimension
- Coset Decomposition for Semisimple Hopf Algebras
- Normal Hopf subalgebras of semisimple Hopf algebras
- Frobenius extensions of subalgebras of Hopf algebras
- Semisimple hopf algebras of dimension 2p
- Depth Two, Normality, and a Trace Ideal Condition for Frobenius Extensions
- An approach to Hopf algebras via Frobenius coordinates
- Frobenius extensions and weak Hopf algebras
This page was built for publication: Depth two Hopf subalgebras of a semisimple Hopf algebra.