Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Haïm Brezis)
From MaRDI portal
Publication:837075
DOI10.1016/j.jfa.2008.12.019zbMath1173.58007OpenAlexW2008336257MaRDI QIDQ837075
Publication date: 10 September 2009
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2008.12.019
Elliptic equations on manifolds, general theory (58J05) Connections of harmonic functions with differential equations in higher dimensions (31B35)
Related Items
On the \(C^{1}\) regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients ⋮ Gradient estimates for divergence form parabolic systems from composite materials ⋮ Nonexistence of Wente's \(L^\infty\) estimate for the Neumann problem ⋮ Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials ⋮ Hopf potentials for the Schrödinger operator ⋮ Gradient Estimates for Stokes and Navier--Stokes Systems with Piecewise DMO Coefficients ⋮ Mean oscillation gradient estimates for elliptic systems in divergence form with VMO coefficients ⋮ Calderón-Zygmund estimates and non-uniformly elliptic operators ⋮ Gradient estimates for Stokes systems with Dini mean oscillation coefficients ⋮ On C1, C2, and weak type-(1,1) estimates for linear elliptic operators ⋮ Regularity of very weak solutions for elliptic equation of divergence form ⋮ On the regularity of very weak solutions for linear elliptic equations in divergence form ⋮ Gradient weighted norm inequalities for linear elliptic equations with discontinuous coefficients ⋮ On a conjecture of J. Serrin ⋮ Pathological solutions to elliptic problems in divergence form with continuous coefficients ⋮ Gradient Estimates for Divergence Form Elliptic Systems Arising from Composite Material ⋮ Boundary value problems in Lipschitz domains for equations with lower order coefficients ⋮ Unnamed Item ⋮ REGULARITY OF VERY WEAK SOLUTIONS FOR NONHOMOGENEOUS ELLIPTIC EQUATION ⋮ Global gradient estimates in elliptic problems under minimal data and domain regularity ⋮ Strong maximum principle for Schrödinger operators with singular potential ⋮ A failing in the Calderon-Zygmund theory of Dirichlet problems for linear equations with discontinuous coefficients
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel
- Martin boundary points of a John domain and unions of convex sets
- Frontière de Martin d'un domaine de \({\mathbb{R}}^ n\) dont le bord est inclus dans une hypersurface lipschitzienne. (Martin boundary of a dommain in \({\mathbb{R}}^ n\) whose boundary is contained in a Lipschitzian hypersurface)
- Kato's inequality and Kato's inequality up to the boundary
- On a conjecture of J. Serrin
- Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions
- Some properties of the Riesz charge associated with a \(\delta\)- subharmonic function
- Triple points: From non-Brownian filtrations to harmonic measures
- Régularité d'accès des bouts et frontière de Martin d'un domaine euclidiens
- Kato's inequality when \(\Delta u\) is a measure
- On the potential theory in John domains
- Quelques propriétés des fonctions surharmoniques associées à une équation uniformement elliptique de la forme \(Lu =-\sum_ i {\partial\over\partial x_ i} \left(\sum_ j a_{ij}{\partial u\over\partial x_ j}\right) = 0\)
- On some non-linear elliptic differential functional equations
- Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus
- Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus
- Schrödinger operators with singular potentials
- Finely harmonic functions
- Theorie du Potentiel sur les Graphes et les Varietes
- KATO'S INEQUALITY UP TO THE BOUNDARY
- An exact sequence in differential topology
- Minimal Positive Harmonic Functions
- Classical potential theory and its probabilistic counterpart.