Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity
From MaRDI portal
Publication:837432
DOI10.1016/j.ijsolstr.2008.03.025zbMath1169.74391OpenAlexW1979535864MaRDI QIDQ837432
Publication date: 10 September 2009
Published in: International Journal of Solids and Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.ijsolstr.2008.03.025
anisotropic elasticityfundamental matrixpiezoelectric materialsStroh formalismexplicit expressionsBarnett-Lothe tensorsmaterial eigenvector matrix
Classical linear elasticity (74B05) Anisotropy in solid mechanics (74E10) Electromagnetic effects in solid mechanics (74F15)
Related Items (11)
A unified representation of plane solutions for anisotropic piezoelectric elasticity ⋮ Electromechanical fracture analysis for corners and cracks in piezoelectric materials ⋮ On the generalized Barnett-Lothe tensors for anisotropic magnetoelectroelastic materials ⋮ Interface corners in piezoelectric materials ⋮ Image force in cubic piezoelectric quasicrystal half-space and bi-material composite space ⋮ Multi-fields in multiferroic materials induced by eigenfields and remote loads ⋮ Fracture behavior of periodically bonded interface of piezoelectric bi-material under compressive–shear loading ⋮ Generalized Barnett-Lothe tensors for the anti-plane deformations of monoclinic piezoelectric materials ⋮ Interfacial line inclusion between two dissimilar thermo-electro-magneto-elastic solids ⋮ Interfacial cracks in piezoelectric bimaterials: an approach based on weight functions and boundary integral equations ⋮ Some explicit expressions of Stroh-like formalism for coupled stretching-bending analysis
Cites Work
- Unnamed Item
- Unnamed Item
- Explicit expressions of the generalized Barnett-Lothe tensors for anisotropic piezoelectric materials
- Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N
- Electroelastic modelling of anisotropic piezoelectric materials with an elliptic inclusion
- Plane problems in piezoelectric media with defects
- Fracture mechanics for piezoelectric ceramics
- Green's functions of two-dimensional anisotropic plates containing an elliptic hole
- On the generalized Barnett-Lothe tensors for monoclinic piezoelectric materials
- Crack Extension Force in a Piezoelectric Material
- Dislocations and Cracks in Anisotropic Elasticity
- Construction of the Theory of Piezoelectric Shells and Plates
This page was built for publication: Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity