A converse to the Oka principle over certain complex Banach manifolds
From MaRDI portal
Publication:837535
DOI10.1016/j.bulsci.2008.10.004zbMath1190.32014OpenAlexW2016503673MaRDI QIDQ837535
Publication date: 20 August 2009
Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.bulsci.2008.10.004
Infinite-dimensional holomorphy (46G20) Stein manifolds (32Q28) Sheaves and cohomology of sections of holomorphic vector bundles, general results (32L10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Vanishing cohomology for holomorphic vector bundles in a Banach setting
- On holomorphic Banach vector bundles over Banach spaces
- An embedding theorem for pseudoconvex domains in Banach spaces
- Equivalence of Steinness and Validity of Oka's principle for subdomains fo Stein manifolds
- CHARAKTERISIERUNG DER STEINSCHEN TEILGEBIETEN DURCH OKASCHES PRINZIP IN ZWEI-DIMENSIONALER STEINSCHER MANNIGFALTIGKEIT
- EQUIVALENCE OF STEINNESS AND VALIDITY OF OKA'S PRINCIPLE FOR SUBDOMAINS WITH CONTINUOUS BOUNDARIES OF A STEIN MANIFOLD
- Plurisubharmonic domination
- Analytic sheaves in Banach spaces☆
- The Dolbeault complex in infinite dimensions. III: Sheaf cohomology in Banach spaces
This page was built for publication: A converse to the Oka principle over certain complex Banach manifolds