Free field realizations of the elliptic affine Lie algebra \(\mathfrak{sl}(2, \mathbb R)\oplus (\varOmega_R/dR)\)
DOI10.1016/j.geomphys.2009.06.007zbMath1217.17015arXiv0902.1273OpenAlexW2963996906WikidataQ115353358 ScholiaQ115353358MaRDI QIDQ838473
Ben L. Cox, Vyacheslav M. Futorny, A. G. Bueno
Publication date: 26 August 2009
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0902.1273
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, (W)-algebras and other current algebras and their representations (81R10)
Related Items (11)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Elliptic affine Lie algebras
- Affine Kac-Moody algebras and semi-infinite flag manifolds
- Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra
- Fock space realizations of imaginary Verma modules
- Structure of intermediate Wakimoto modules
- Realizations of the four point affine Lie algebra \(\mathfrak{sl}(2, R)\oplus (\Omega_R/dRdR\))
- Fock representations of the affine Lie algebra \(A_ 1^{(1)}\)
- Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons
- Virasoro-type algebras, Riemann surfaces and strings in Minkowski space
- Central extensions of Lie algebras
- Representations of the Heisenberg algebra on a Riemann surface
- Axioms for a vertex algebra and the locality of quantum fields
- Modules with highest weight for affine Lie algebras on Riemann surfaces
- Tensor Structures Arising from Affine Lie Algebras. I
- Intermediate Wakimoto modules for affine
- Imaginary Verma Modules for Affine Lie Algebras
- Universal central extensions of elliptic affine Lie algebras
This page was built for publication: Free field realizations of the elliptic affine Lie algebra \(\mathfrak{sl}(2, \mathbb R)\oplus (\varOmega_R/dR)\)