Correlation kernels for discrete symplectic and orthogonal ensembles
DOI10.1007/s00220-008-0629-8zbMath1190.82005arXiv0712.1693OpenAlexW2009131444MaRDI QIDQ842429
Eugene Strahov, Alexei Borodin
Publication date: 25 September 2009
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0712.1693
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis (42C05) Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics (82B44) Quantum equilibrium statistical mechanics (general) (82B10) Random matrices (algebraic aspects) (15B52) Polynomials and rational functions of one complex variable (30C10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(Z\)-measures on partitions and their scaling limits
- Harmonic analysis on the infinite symmetric group
- Gaussian ensembles of random Hermitian matrices intermediate between orthogonal and unitary ones
- Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes
- Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues
- Distribution of the first particle in discrete orthogonal polynomial ensembles
- Discrete gap probabilities and discrete Painlevé equations.
- Transitive ensembles of random matrices related to orthogonal polynomials.
- Asymptotic correlations at the spectrum edge of random matrices
- Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges
- Quaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices
- Classical skew orthogonal polynomials and random matrices
- Point processes and the infinite symmetric group.
- Correlations for superpositions and decimations of Laguerre and Jacobi orthogonal matrix ensembles with a parameter
- Interpretations of some parameter dependent generalizations of classical matrix ensembles
- Correlation functions, cluster functions, and spacing distributions for random matrices
- Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model
- On the relation between orthogonal, symplectic and unitary matrix ensembles
- Dynamical correlations among vicious random walkers
- Dynamical correlations for vicious random walk with a wall
- Universality for orthogonal and symplectic Laguerre-type ensembles
- Pfaffian expressions for random matrix correlation functions
- Eynard-Mehta theorem, Schur process, and their Pfaffian analogs
- Averages of characteristic polynomials in random matrix theory
- Correlation functions for random involutions
- Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices
- Universality in Chiral Random Matrix Theory at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>1</mml:mn><mml:mn /></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>4</mml:mn><mml:mn /></mml:math>
- Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory
- The Shifted Schur Process and Asymptotics of Large Random Strict Plane Partitions
- Universality in Random Matrix Theory for orthogonal and symplectic ensembles
- On some Gaussian ensembles of Hermitian matrices
- Spectral universality of real chiral random matrix ensembles
- Correlation functions for multi-matrix models and quaternion determinants
- Universality in orthogonal and symplectic invariant matrix models with quartic potential
- Vicious random walkers and a discretization of Gaussian random matrix ensembles