Universal bounds for eigenvalues of the biharmonic operator
From MaRDI portal
Publication:847046
DOI10.1016/j.jmaa.2009.11.014zbMath1189.35208OpenAlexW2570888050MaRDI QIDQ847046
Publication date: 12 February 2010
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2009.11.014
Boundary value problems for higher-order elliptic equations (35J40) Plates (74K20) Estimates of eigenvalues in context of PDEs (35P15) Spectral problems; spectral geometry; scattering theory on manifolds (58J50) PDEs in connection with mechanics of deformable solids (35Q74)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inequalities for eigenvalues of the biharmonic operator
- Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds
- Maximum principles and nonexistence results for minimal submanifolds
- Eigenvalue estimates on homogeneous manifolds
- A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions
- A second proof of the Payne-Pólya-Weinberger conjecture
- The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H. C. Yang
- Estimates on eigenvalues of Laplacian
- A unified approach to universal inequalities for eigenvalues of elliptic operators
- Commutators, spectral trace identities, and universal estimates for eigenvalues
- On the Ratio of Consecutive Eigenvalues
- Domain-Independent Upper Bounds for Eigenvalues of Elliptic Operators
- Proof of the Payne-Pólya-Weinberger conjecture
- Some geometric bounds on eigenvalue gaps
- Commutator bounds for eigenvalues, with applications to spectralgeometry
- On trace identities and universal eigenvalue estimates for some partial differential operators
- Inequalities for eigenvalues of a clamped plate problem
This page was built for publication: Universal bounds for eigenvalues of the biharmonic operator