Gelfand transforms of \(\mathrm{SO}(3)\)-invariant Schwartz functions on the free group \(N_{3,2}\)
From MaRDI portal
Publication:848118
DOI10.5802/aif.2486zbMath1187.43007arXiv0809.1952OpenAlexW2963057591MaRDI QIDQ848118
Fulvio Ricci, Veronique Fischer
Publication date: 22 February 2010
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0809.1952
Related Items (8)
Schwartz correspondence for the complex motion group on \(\mathbb{C}^2\) ⋮ Spectral multipliers on 2-step stratified groups. I. ⋮ Nilpotent Gelfand pairs and spherical transforms of Schwartz functions. I: Rank-one actions on the centre ⋮ Nilpotent Gelfand pairs and Schwartz extensions of spherical transforms via quotient pairs ⋮ Spectral theory for commutative algebras of differential operators on Lie groups ⋮ Analysis of joint spectral multipliers on Lie groups of polynomial growth ⋮ On the Schwartz correspondence for Gelfand pairs of polynomial growth ⋮ Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Gelfand pairs on the Heisenberg group and Schwartz functions
- Fourier analysis on the Heisenberg group. I. Schwartz space
- Smooth functions invariant under the action of a compact Lie group
- Subelliptic estimates and function spaces on nilpotent Lie groups
- Differentiable invariants
- The spherical transform of a Schwartz function on the Heisenberg group
- The Radon transform.
- Gelfand transforms of polyradial Schwartz functions on the Heisenberg group
- On Gelfand Pairs Associated with Solvable Lie Groups
- A functional calculus for Rockland operators on nilpotent Lie groups
- Caracterisation des operateurs hypoelliptiques homogenes
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- The topology of the spectrum for Gelfand pairs on Lie groups
This page was built for publication: Gelfand transforms of \(\mathrm{SO}(3)\)-invariant Schwartz functions on the free group \(N_{3,2}\)