Invariant Einstein metrics on flag manifolds with four isotropy summands
From MaRDI portal
Publication:849347
DOI10.1007/s10455-009-9183-7zbMath1193.53111arXiv0904.1690OpenAlexW2040734581MaRDI QIDQ849347
Andreas Arvanitoyeorgos, Ioannis Chrysikos
Publication date: 25 February 2010
Published in: Annals of Global Analysis and Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0904.1690
Einstein metrichomogeneous manifoldgeneralized flag manifoldisotropy representation\({\mathfrak t}\)-roots
Differential geometry of homogeneous manifolds (53C30) Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25)
Related Items
Invariant Einstein metrics on generalized flag manifolds of $Sp(n)$ and $SO(2n)$ ⋮ Non-naturally reductive Einstein metrics on exceptional Lie groups ⋮ Complete description of invariant Einstein metrics on the generalized flag manifold \(SO(2n)/U(p) \times U(n - p)\) ⋮ Proving isometry for homogeneous Einstein metrics on flag manifolds by symbolic computation ⋮ Ricci flow on certain homogeneous spaces ⋮ Flag manifolds, symmetric \(\mathfrak t\)-triples and Einstein metrics ⋮ Isometric problem of invariant Einstein metrics on full flag manifolds ⋮ The classification of homogeneous Einstein metrics on flag manifolds with \(b_2(M) = 1\) ⋮ PARABOLIC SUBROOT SYSTEMS AND THEIR APPLICATIONS ⋮ Homogeneous Einstein metrics on \(SU(n)\) ⋮ Geometry of compact complex homogeneous spaces with vanishing first Chern class ⋮ Equigeodesics on generalized flag manifolds with four isotropy summands ⋮ Equigeodesics on generalized flag manifolds with \(\text{G}_2\)-type \(\mathfrak{t} \)-roots ⋮ Homogeneous Einstein metrics on non-Kähler C-spaces ⋮ Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds ⋮ New non-naturally reductive Einstein metrics on exceptional simple Lie groups ⋮ Homogeneous Einstein metrics on certain generalized flag manifolds with six isotropy summands ⋮ The Ricci flow approach to homogeneous Einstein metrics on flag manifolds ⋮ Homogeneous Einstein metrics on the generalized flag manifold ⋮ Maxima of curvature functionals and the prescribed Ricci curvature problem on homogeneous spaces ⋮ Classification of invariant Einstein metrics on certain compact homogeneous spaces ⋮ Homogeneous Einstein metrics on 𝐺₂/𝑇 ⋮ Spin structures on compact homogeneous pseudo-Riemannian manifolds ⋮ Invariant generalized complex structures on partial flag manifolds ⋮ The projected homogeneous Ricci flow and its collapses with an application to flag manifolds ⋮ Ancient solutions of the homogeneous Ricci flow on flag manifolds ⋮ HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Classification of invariant complex structures on irreducible compact simply connected coset spaces
- Geometry of homogeneous Riemannian manifolds
- The geometry of compact homogeneous spaces with two isotropy summands
- Motion of charged particles and homogeneous geodesics in Kähler \(C\)-spaces with two isotropy summands
- Homogeneous Kähler manifolds: Paving the way towards new supersymmetric sigma models
- Existence and non-existence of homogeneous Einstein metrics
- Invariant Kähler-Einstein metrics on compact homogeneous spaces
- Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces
- Notes on Lie algebras.
- On curvature properties of Kähler C-spaces
- Noncompact homogeneous Einstein spaces
- Invariant Einstein metrics on certain homogeneous spaces
- Kähler-Einstein metrics with positive scalar curvature
- A variational approach for compact homogeneous Einstein manifolds
- Homogeneous Einstein metrics on flag manifolds
- Sur certains modules dans une algèbre de Lie semi-simple
- INVARIANT EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH TWO ISOTROPY SUMMANDS
- Characteristic Classes and Homogeneous Spaces, I
- GEOMETRY OF FLAG MANIFOLDS
- ON THE NUMBER OF INVARIANT EINSTEIN METRICS ON A COMPACT HOMOGENEOUS SPACE, NEWTON POLYTOPES AND CONTRACTIONS OF LIE ALGEBRAS
- Riemannian flag manifolds with homogeneous geodesics
- On normal homogeneous Einstein manifolds
- New Invariant Einstein Metrics on Generalized Flag Manifolds
- ON SASAKIAN–EINSTEIN GEOMETRY
- Low-dimensional homogeneous Einstein manifolds
- Closed Manifolds with Homogeneous Complex Structure
- Kählerian Coset Spaces of Semisimple Lie Groups
- Compact homogeneous Einstein 7-manifolds