The singularity property of Banach function spaces and unconditional convergence in \(L^1[0,1]\).
DOI10.1007/S11117-005-0001-6zbMath1117.46011OpenAlexW2008380578MaRDI QIDQ850592
Publication date: 3 November 2006
Published in: Positivity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11117-005-0001-6
Banach function spaceunconditional basisHardy-Littlewood maximal operatormodular spacesingularity property
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25) Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces (46B15)
Related Items (3)
Cites Work
This page was built for publication: The singularity property of Banach function spaces and unconditional convergence in \(L^1[0,1]\).