Bernstein widths of Hardy-type operators in a non-homogeneous case
DOI10.1016/j.jmaa.2006.02.025zbMath1126.47041OpenAlexW2092307355MaRDI QIDQ853982
Publication date: 7 December 2006
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2006.02.025
weighted spacesintegral operators\(pq\)-Laplacianapproximation and Bernstein numbersweighted Hardy-type operators
Maximal functions, Littlewood-Paley theory (42B25) Integral operators (47G10) Approximation by arbitrary nonlinear expressions; widths and entropy (41A46) Inequalities involving derivatives and differential and integral operators (26D10)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- n-widths of Sobolev spaces in \(L^ p\)
- Spectrum of nonlinear integral equations and the widths of function classes
- Behaviour of the approximation numbers of a Sobolev embedding in the one-dimensional case.
- Remainder estimates for the approximation numbers of weighted Hardy operators acting on \(L^2\)
- Improved estimates for the approximation numbers of Hardy-type operators.
- Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet
- The Approximation Numbers of Hardy-Type Operators on Trees
- SPECTRA OF NONLINEAR DIFFERENTIAL EQUATIONS AND WIDTHS OF SOBOLEV CLASSES
- SPECTRAL THEORY AND EMBEDDINGS OF SOBOLEV SPACES
- Two-sided estimates for the approximation numbers of Hardy-type operators in $L^{∞}$ and L¹
- Approximation and entropy numbers of Volterra operators with application to Brownian motion
This page was built for publication: Bernstein widths of Hardy-type operators in a non-homogeneous case